Anti-Mycobacterial Evaluation of 7-Chloro-4-Aminoquinolines and Hologram Quantitative Structure–Activity Relationship (HQSAR) Modeling of Amino–Imino Tautomers
نویسندگان
چکیده
In an ongoing research program for the development of new anti-tuberculosis drugs, we synthesized three series (A, B, and C) of 7-chloro-4-aminoquinolines, which were evaluated in vitro against Mycobacterium tuberculosis (MTB). Now, we report the anti-MTB and cytotoxicity evaluations of a new series, D (D01-D21). Considering the active compounds of series A (A01-A13), B (B01-B13), C (C01-C07), and D (D01-D09), we compose a data set of 42 compounds and carried out hologram quantitative structure-activity relationship (HQSAR) analysis. The amino-imino tautomerism of the 4-aminoquinoline moiety was considered using both amino (I) and imino (II) forms as independent datasets. The best HQSAR model from each dataset was internally validated and both models showed significant statistical indexes. Tautomer I model: leave-one-out (LOO) cross-validated correlation coefficient (q²) = 0.80, squared correlation coefficient (r²) = 0.97, standard error (SE) = 0.12, cross-validated standard error (SEcv) = 0.32. Tautomer II model: q² = 0.77, r² = 0.98, SE = 0.10, SEcv = 0.35. Both models were externally validated by predicting the activity values of the corresponding test set, and the tautomer II model, which showed the best external prediction performance, was used to predict the biological activity responses of the compounds that were not evaluated in the anti-MTB trials due to poor solubility, pointing out D21 for further solubility studies to attempt to determine its actual biological activity.
منابع مشابه
HQSAR: A New, Highly Predictive QSAR Technique
.................................................................................................. 3 INTRODUCTION......................................................................................... 3 QSAR TECHNIQUES .................................................................................. 3 CALCULATION OF MOLECULAR DESCRIPTORS............................ 3 STATISTICAL GENERATION O...
متن کاملFragment-Based Hologram QSAR Studies on a Series of 2,4-Dioxopyrimidine-1-Carboxamides As Highly Potent Inhibitors of Acid Ceramidase
A series of structurally related 2,4-dioxopyrimidine-1-carboxamide derivatives as highly potent inhibitors against acid ceramidase were subjected to hologram quantitative structure-activity relationship (HQSAR) analysis. A training set containing 24 compounds served to establish the HQSAR model. The best HQSAR model was generated using atoms, bond, connectivity, donor and acceptor as fragment d...
متن کاملFragment-Based Hologram QSAR Studies on a Series of 2,4-Dioxopyrimidine-1-Carboxamides As Highly Potent Inhibitors of Acid Ceramidase
A series of structurally related 2,4-dioxopyrimidine-1-carboxamide derivatives as highly potent inhibitors against acid ceramidase were subjected to hologram quantitative structure-activity relationship (HQSAR) analysis. A training set containing 24 compounds served to establish the HQSAR model. The best HQSAR model was generated using atoms, bond, connectivity, donor and acceptor as fragment d...
متن کاملHologram Quantitative Structure Activity Relationship (HQSAR) Study of Mutagen X
MX and its analogs are synthesized and modeled by quantitative structure activity relationship (QSAR) study including comparative molecular field analysis (CoMFA). As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. Because hologram quantitative structure activity relationship (HQSAR) technique is based on the 2-dimensional descriptors,...
متن کاملHolographic Quantitative Structure-Activity Relationship (HQSAR) Study of 3,4-Dihydroxychalcone Derivatives as 5-Lipoxygenase Inhibitors
Holographic quantitative structure-activity relationships (HQSAR) is a useful tool to correlates structures with their biological activities. HQSAR is a two dimensional (2D) QSAR methodology, which generates QSAR equations through 2D fingerprint and correlates it with biological activity. Here, we report a 2D-QSAR model for a series of fifty-one 3,4dihydroxychalcones derivatives utilizing HQSAR...
متن کامل